Intervals of permutations with a fixed number of descents are shellable
نویسنده
چکیده
The set of all permutations, ordered by pattern containment, is a poset. We present an order isomorphism from the poset of permutations with a fixed number of descents to a certain poset of words with subword order. We use this bijection to show that intervals of permutations with a fixed number of descents are shellable, and we present a formula for the Möbius function of these intervals. We present an alternative proof for a result on the Möbius function of intervals [1, π] such that π has exactly one descent. We prove that if π has exactly one descent and avoids 456123 and 356124, then the intervals [1, π] have no nontrivial disconnected subintervals; we conjecture that these intervals are shellable.
منابع مشابه
The Lefschetz Property for Barycentric Subdivisions of Shellable Complexes
We show that an ’almost strong Lefschetz’ property holds for the barycentric subdivision of a shellable complex. From this we conclude that for the barycentric subdivision of a CohenMacaulay complex, the h-vector is unimodal, peaks in its middle degree (one of them if the dimension of the complex is even), and that its g-vector is an M -sequence. In particular, the (combinatorial) g-conjecture ...
متن کامل2-stack Sortable Permutations with a given Number of Runs
Using earlier results we prove a formula for the number W(n,k) of 2stack sortable permutations of length n with k runs, or in other words, k − 1 descents. This formula will yield the suprising fact that there are as many 2-stack sortable permutations with k−1 descents as with k−1 ascents. We also prove that W(n,k) is unimodal in k, for any fixed n.
متن کاملOn the topology of the permutation pattern poset
The set of all permutations, ordered by pattern containment, forms a poset. This paper presents the first explicit major results on the topology of intervals in this poset. We show that almost all (open) intervals in this poset have a disconnected subinterval and are thus not shellable. Nevertheless, there seem to be large classes of intervals that are shellable and thus have the homotopy type ...
متن کاملEnumeration of Derangements with Descents in Prescribed Positions
We enumerate derangements with descents in prescribed positions. A generating function was given by Guo-Niu Han and Guoce Xin in 2007. We give a combinatorial proof of this result, and derive several explicit formulas. To this end, we consider fixed point λ-coloured permutations, which are easily enumerated. Several formulae regarding these numbers are given, as well as a generalisation of Eule...
متن کاملNormal Approximations for Descents and Inversions of Permutations of Multisets
Normal approximations for descents and inversions of permutations of the set {1, 2, . . . , n} are well known. We consider the number of inversions of a permutation π(1), π(2), . . . , π(n) of a multiset with n elements, which is the number of pairs (i, j) with 1 ≤ i < j ≤ n and π(i) > π(j). The number of descents is the number of i in the range 1 ≤ i < n such that π(i) > π(i + 1). We prove tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 339 شماره
صفحات -
تاریخ انتشار 2016